Management strategies for the control of *Tuta* absoluta (Lepidoptera: Gelechiidae) and their effectiveness

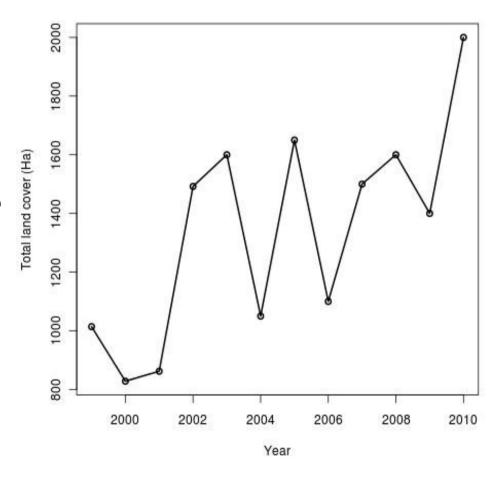
Mario V. Balzan, Anna-Camilla Moonen E-mail: m.balzan@sssup.it

Introduction

- Several studies have been conducted on the ecology of *Tuta absoluta* (Meyrick);
- So far, a relatively wide range of natural enemies native to the Mediterranean region have been identified;
- Limited data available on (a) **level biological control** in open-field cultivations, (b) resulting **yield loss** and (c) within-field and surroundings **natural enemy habitats** availability
- Habitat management strategies for controlling exotic species have been recently reviewed (Jonsson et al. 2010)

Introduction

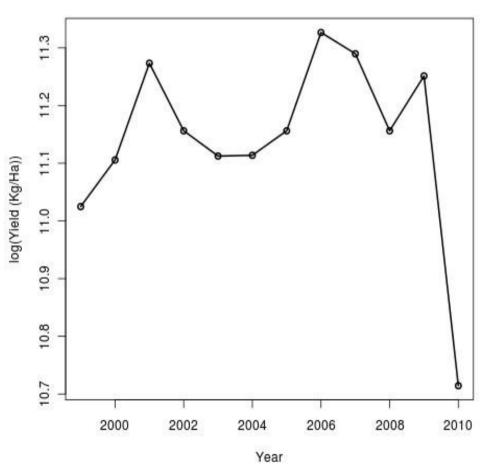
Type	Plant-feeding stage	Family	Plant-derived resources	
T 10 11 1		Ichneumonoidea	Nectar	
Life-history omnivory	Adult	Vespidae	Nectar, fruit	
		Formicidae	Nectar	
Temporal	Adult	Ichneumonoidea	Nectar	
Omnivory	Juvenile	Araneidae	Pollen	
Permanent Omnivory	Adult & Juvenile	Phytoseiidae Miridae Geocoridae Anthocoridae Coccinelidae Carabidae	Nectar, pollen Plant juice Plant juice Pollen Nectar Pollen, seeds	


Adapted from Wackers (2005)

Research aims

- To monitor spatio-temporal distribution of *T. absoluta* in processing tomatoes cultivations in Tuscany, Italy
- What management practices are utilised by farmers for the control of this pest within the area of study?

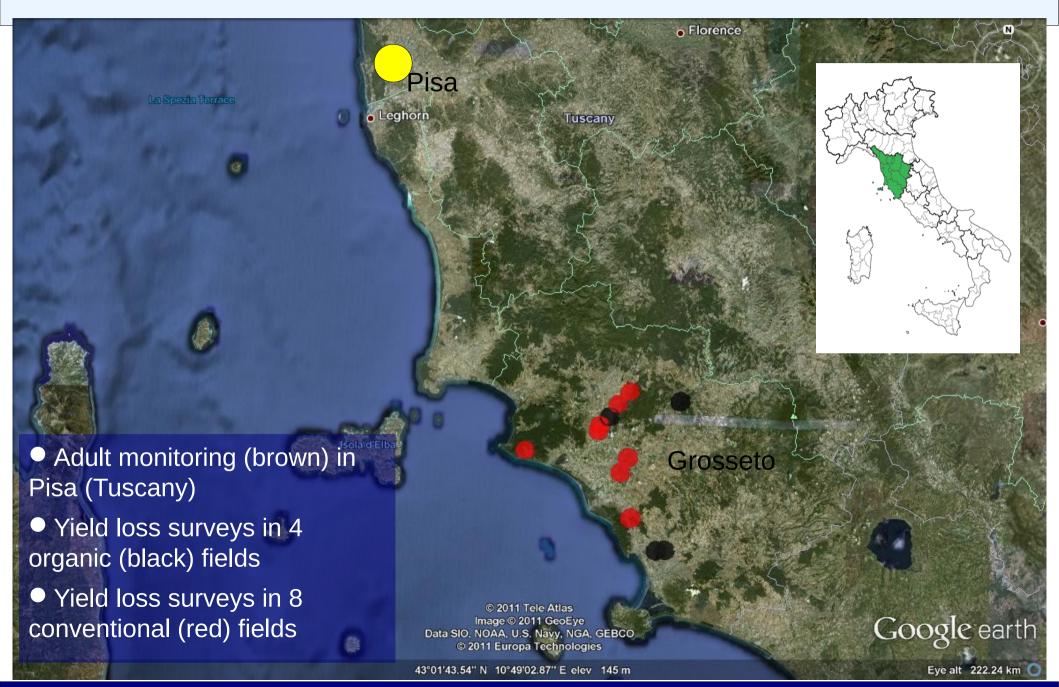
Processing tomato cultivations


- Open field-cultivations of processing tomato the most important horticultural crop in Grosseto.
- Dedicated land cover has increased overall during the last decade.

From ISTAT data (http://agri.istat.it/)

Processing tomato cultivations

- First records of *T. absoluta* within the region from Grosseto in 2009 (Bagnoli et al. 2010).
- In 2010 a major drop in yield (kg/ha) was observed

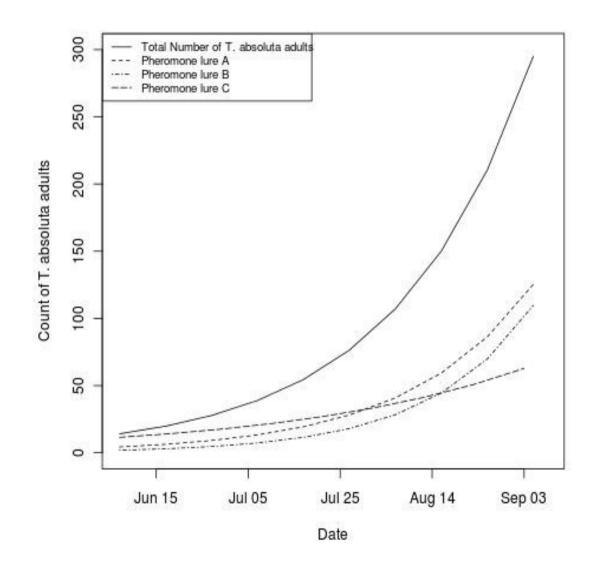


From ISTAT data (http://agri.istat.it/)

Research Questions

- IPM strategies should based on different monitoring strategies (pheromone lures, yield loss counts) and diversified pest control techniques.
 - How does adult population of *T. absoluta* change with time across the life-cycle of the crop? - **Pheromone lures**
 - What is the magnitude of pest damage from *T. absoluta* in organically and conventionally managed field? Yield Loss/Gallery abundance counts
 - Which PM strategies are utilised by farmers within the study area? - Pesticide records/Farmers' Questionnaire

Study Area

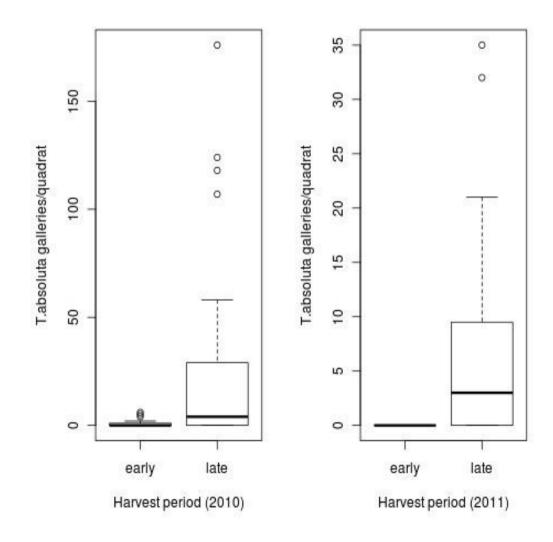

Pheromone lures

- Three traps in organicallymanaged cultivations in Pisa (Italy);
- Site forms part of organically-managed experimental fields in a natural park;
- Monitored weekly;
- A generalised linear model (GLM), using a quasipoisson distribution fitted on count data.

• Pheromone lures

- Exponential increase in population counts;
- Counts reach an average of 105 adults/trap/week just before harvest, soon after the first week of September.

Yield loss in conventionally managed farms


- Field surveys in 8 fields in the growing seasons of 2010 and 2011;
- 4 fields/year
- Sampling date was carried out 7-14 days before harvest;
- A grid of 15 (large fields) and 9 (small fields) sampling points was used in 2010.
- A grid of 12 sampling points used for all fields in 2011
- Each point consists of a 1m² quadrat.
- Gallery abundance measured in middle and upper-canopy fruits for 5 minutes.

Yield loss in conventionally managed farms

- Recorded in nearly all surveyed fields, except for tomatoes harvested early (June-July) during the growing season of 2011
- Always higher during 2010
- Generalised linear model suggests that both harvest period and year significantly influence gallery abundance.

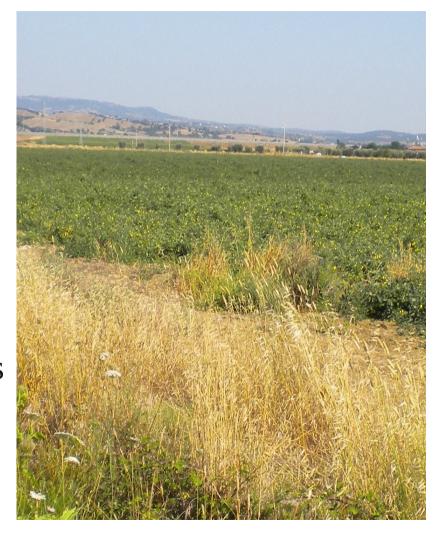
Factor	t-value	p-value		
Harvest period	3.65	< 0.0001		
Year	-3.53	< 0.0001		

• Yield loss in conventionally managed farms

Yield loss in organic fields

- Leaf and fruit gallery abundance monitored in a sampling grid of 60 points/field;
- A survey of 4 organically-managed field carried out between June-September, 2011
- For each sample gallery abundance in two upper-canopy leafs and five fruits were recorded

Yield loss in organic fields


 Gallery abundance of larval stages of *T. absoluta* remained relatively low in all 4 sampled fields throughout the growing season

Field	Mean galleries/leaf	Mean galleries/fruit
Α	0.025 ± 0.143 b	0.007 ± 0.052 a
В	0.075 ± 0.289 ab	0.020 ± 0.088 ab
С	$0.117 \pm 0.282 \text{ a}$	0 ± 0.000 b
D	$0.025 \pm 0.110 \text{ b}$	0 ± 0.000 b

• Farmers' Pest Management (PM) strategies

- Pesticide records for organic and conventionally-managed fields
- Semi-open interviews with conventional-fields farmers from 2010

- Farmers' PM strategies Perceptions and decisionmaking indicators
 - Monitoring strategies
 - "If and when" decision
 - Ecology of *T. absoluta*
 - Habitat management –
 providing habitat and resources
 for natural enemies

Farmers' PM Strategies

- Organic farms
 - Insecticide applications recorded from 3 (out of 4) fields
 - For two fields (A, B) pest management was mainly based on Bt applications every fortnight
 - Field C only one application of pyrethrine

Farmers' PM Strategies

- Conventionally-managed fields
 - Altogether interviewed farmers managed a total of 291ha dedicated to conventionally-managed tomato in 2010
 - PM largely based on chemical inputs

Conventional Farm	1	2	3	4
Land cover (ha)	150	35	102	2
Pheromone trapping (Noctuidae)	Y	N	Y	N
Pheromone trapping (T. absoluta)	N	N	N	N
PM strategy	Noctuidae traps treshold; visual estimations of yield loss	shold; visual Calendar-based Calendar-based		Calendar-based treatments
Active ingredients	Deltamethrin; Lambda- cyhalothrin	Deltamethrin; Lambda- cyhalothrin	Indoxacarb; Lambda- cyhalothrin	Indoxacarb; Spinosad

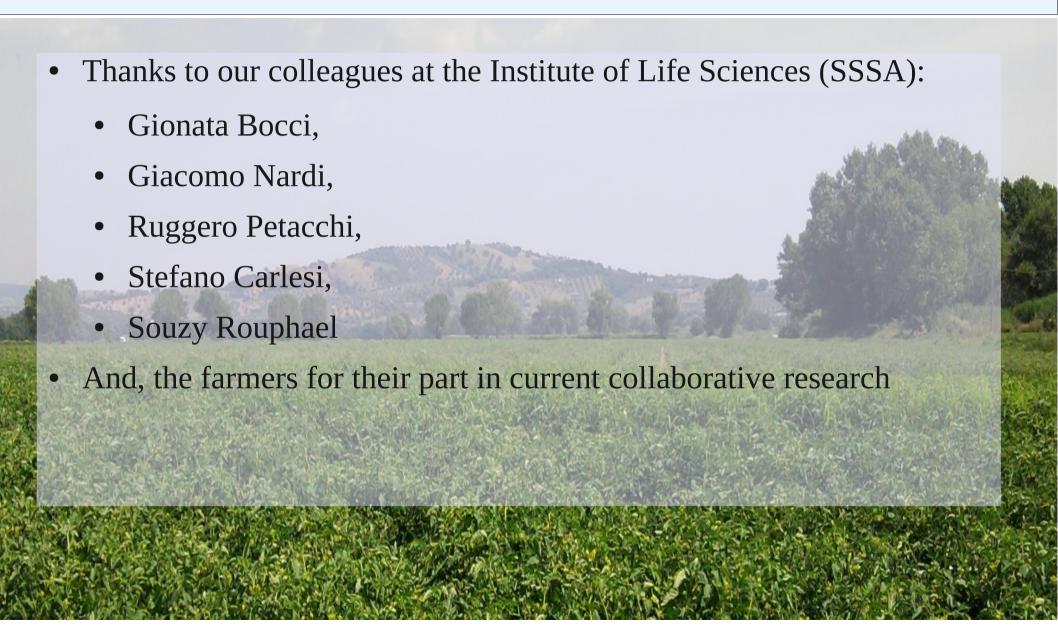
- Farmers' PM strategies Perceptions and decision-making indicators
 - Low use of pheromone lures and yield loss monitoring;
 - Calendar-based (every 15-25 days) insecticide applications
 - Farmers' identified within-field herbaceous and weed species as potential host plants for *T. absoluta* (but most were unable to identify any plant species with the exception of one person who identified *Solanum nigrum*)

- Farmers' PM strategies Habitat Management
 - Uncultivated field edges managed through chemical and mechanical measures
 - System characterised by high levels of ecological disturbances, likely to compromise biological control
 - Calendar based pesticides (fungicides, herbicides, insecticides)

PM strategies

Pesticide side effects used in conventional (& organic*) cultivations in Grosseto on selected taxa of natural enemies & their toxicity

Active ingredient	Type	Pedatory mites (Typhlodromus pyri)	Predatory mites (Phytoseiulus persimilis)	Spiders (<i>Pardosa</i> spp.)	Flower bugs (Anthocoris nemoralis)	Coccinelidae (Coccinella septempunctata)	Parasitoids (Aphidius rhopalosiphi)	Parasitoids (<i>Trichogramma</i> cacoeciae)	WHO toxicity class
Fosetyl-Al	F	N	N		M	N	N	M	U
Mancozeb	F	T	T		M	N	N	T	U
Glyphosate	Н	M	M		N		N	M	U
Deltamethrin	I	T	T		T	T		T	II
Imidacloprid	I	N	N	T	T	T	T	T	II
Indoxacarb	I	N	N		M	M		M	III
Lambda- cyhalothrin	Ι	Т	Т	Т	Т	Т		Т	II
Pyrethrine*	I	N			M			M	II


IOBC (field & semi-field) classification: N = harmless or slightly (reduction 0+50%); M= moderately harmful (reduction 51-75%); T = harmful (reduction > 75%)

WHO classification: U = Unlikely to present acute hazard in normal use; III=Slightly hazardous; II=Moderately hazardous

Conclusion

- *T. absoluta* has become established throughout the area of study and different PM practices;
- Low *T. absoluta*-caused damage recorded in 2011 throughout all trials, and yield loss normally associated with tomatoes harvested later (September) in the season;
- Current PM strategies mainly based on insecticides use;
- Potential for IPM strategies

Acknowledgements

